Relationship between photosynthetic electron transport and pH gradient across the thylakoid membrane in intact leaves.
نویسندگان
چکیده
Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.
منابع مشابه
Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves.
Using thylakoid membranes, we previously demonstrated that accumulated electrons in the photosynthetic electron transport system induces the electron flow from the acceptor side of PSII to its donor side only in the presence of a pH gradient ((Delta)pH) across the thylakoid membranes. This electron flow has been referred to as cyclic electron flow within PSII (CEF-PSII) [Miyake and Yokota (2001...
متن کاملA proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the ligh...
متن کاملRevealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells
Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been w...
متن کاملElectron Transport through photosystem I Stimulates Light Activation of Ribulose Bisphosphate Carboxylase/Oxygenase (Rubisco) by Rubisco Activase.
The activation state of ribulose bisphosphate carboxylase/oxygenase (rubisco) in a lysed chloroplast system is increased by light in the presence of a saturating concentration of ATP and a physiological concentration of CO(2) (10 micromolar). Electron transport inhibitors and artificial electron donors and acceptors were used to determine in which region of the photosynthetic electron transport...
متن کاملHigh root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings.
The most photosynthetically active leaves of rice seedlings were severely damaged when shoots but not roots were chilled (10°C/25°C, respectively), but no such injury was observed when the whole seedling was chilled (10°C/10°C). To elucidate the mechanisms, we compared the photosynthetic characteristics of the seedlings during the dark chilling treatments. Simultaneous analyses of Chl fluoresce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 26 شماره
صفحات -
تاریخ انتشار 1995